The Multiplicative Complexity of Boolean Functions on Four and Five Variables
نویسندگان
چکیده
A generic way to design lightweight cryptographic primitives is to construct simple rounds using small nonlinear components such as 4x4 S-boxes and use these iteratively (e.g., PRESENT [1] and SPONGENT [2]). In order to efficiently implement the primitive, efficient implementations of its internal components are needed. Multiplicative complexity of a function is the minimum number of AND gates required to implement it by a circuit over the basis (AND, XOR, NOT). It is known that multiplicative complexity is exponential in the number of input bits n. Thus it came as a surprise that circuits for all 65 536 functions on four bits were found which used at most three AND gates [3]. In this paper, we verify this result and extend it to five-variable Boolean functions. We show that the multiplicative complexity of a Boolean function with five variables is at most four.
منابع مشابه
On the multiplicative complexity of Boolean functions over the basis (cap, +, 1)
The multiplicative complexity c^(f) of a Boolean function f is the minimum number of AND gates in a circuit representing f which employs only AND, XOR and NOT gates. A constructive upper bound, c^(f) = 2 n 2 +1 ? n=2 ? 2, for any Boolean function f on n variables (n even) is given. A counting argument gives a lower bound of c^(f) = 2 n 2 ? O(n). Thus we have shown a separation, by an exponentia...
متن کاملA relation between additive and multiplicative complexity of Boolean functions
In the present note we prove an asymptotically tight relation between additive and multiplicative complexity of Boolean functions with respect to implementation by circuits over the basis {⊕,∧, 1}. To start, consider a problem of computation of polynomials over a semiring (K,+,×) by circuits over the arithmetic basis {+,×} ∪K. It’s a common knowledge that a polynomial of n variables with nonsca...
متن کاملThe number of boolean functions with multiplicative complexity 2
Multiplicative complexity is a complexity measure defined as the minimum number of AND gates required to implement a given primitive by a circuit over the basis (AND, XOR, NOT). Implementations of ciphers with a small number of AND gates are preferred in protocols for fully homomorphic encryption, multi-party computation and zero-knowledge proofs. In 2002, Fischer and Peralta [12] showed that t...
متن کاملCircuit Complexity and Multiplicative Complexity of Boolean Functions
In this note, we use lower bounds on Boolean multiplicative complexity to prove lower bounds on Boolean circuit complexity. We give a very simple proof of a 7n/3− c lower bound on the circuit complexity of a large class of functions representable by high degree polynomials over GF(2). The key idea of the proof is a circuit complexity measure assigning different weights to XOR and AND gates.
متن کاملConcrete Multiplicative Complexity of Symmetric Functions
The multiplicative complexity of a Boolean function f is defined as the minimum number of binary conjunction (AND) gates required to construct a circuit representing f , when only exclusive-or, conjunction and negation gates may be used. This article explores in detail the multiplicative complexity of symmetric Boolean functions. New techniques that allow such exploration are introduced. They a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2015 شماره
صفحات -
تاریخ انتشار 2014